1. (14 points) Let X and Y have a joint probability density function given by

$$f(x,y) = \begin{cases} \frac{1}{2} & \text{if } 0 \le y \le x \le 2\\ 0 & \text{otherwise} \end{cases}$$

- (a) Compute the marginal probability density functions for X and Y.
- (b) Compute $P(X \le 1, Y \le \frac{1}{2})$.

2. (12 points) Suppose X_1 and X_2 are independent Exponential (λ) random variables. Find the conditional distribution of X_1 given $X_1 + X_2 = z$ for some z > 0.

3. (14 points) Let X, Y, Z be independent random variables that each have the uniform distribution on the interval (0, 1). Find $P\left(\frac{X}{Y} > \frac{Y}{Z}\right)$.

4. (15 points) Let $X \stackrel{d}{=} N(0,1)$ and Z be an independent random variable such that $P(Z=1) = P(Z=-1) = \frac{1}{2}$.

- (a) Let Y = ZX. Find the probability density function of Y.
- (b) Suppose X_1, X_2 are two Normal random variables with mean 0, variance 1 and covariance 0. Decide when does it imply that X_1 and X_2 are independent random variables.